在正四棱锥P-ABCD中,PA=AB,E、N、F分别为棱AB、棱BC和棱PC的中点,则异面直线PE与FN所成角为A.arccosB.30°C.arccosD.60°
网友回答
B
解析分析:求两异面直线的夹角的方法有线段变化平移与线段不变化平移,平移线段后组成三角形,再利用解三角形的方法求解两异面直线的夹角的三角函数值.
解答:解:如图,∵N、F分别为棱BC和棱PC的中点,∴FN∥PB,∴∠BPE为异面直线PE与FN所成角,在正四棱锥P-ABCD中,PA=PB=AB.三角形PAB是正三角形,从而在△BPA中,由于E为棱AB的中点,∴∠BPE=∠BPA==30°,故选B.
点评:本小题主要考查棱锥的几何特征、异面直线及其所成的角、解三角形等基础知识,考查运算求解能力,考查空间想象能力.属于基础题.