如图一次函数y=k1x+b的图象与反比例函数y=的图象交于点A(1,6),B(3,a).(1)求k1、k2的值;(2)直接写出一次函数y=k1x+b的值大于反比例函数

发布时间:2020-08-10 14:28:15

如图一次函数y=k1x+b的图象与反比例函数y=的图象交于点A(1,6),B(3,a).
(1)求k1、k2的值;
(2)直接写出一次函数y=k1x+b的值大于反比例函数的值时x的取值范围:______;
(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当点P为CE的中点时,求梯形OBCD的面积.

网友回答

解:(1)把A(1,6)代入y=,
解得,k2=6,
∴y=,
?把B(3,a)代入y=,
解得,a=2,
∴B点坐标为(3,2),
把B(3,2)、A(1,6)代入y=k1x+b,
得3k1+b=2,k1+b=6,
解得k1=-2,b=8,
∴k1=-2,k2=6;

(2)1<x<3??或?x<0;

(3)如图,设C(t,2),过B作BF⊥x轴于F点,
∵CE⊥OD于点E,点P为CE的中点,
∴P(t,1),
而点P在反比例函数y=的图象上,
把P(t,1)代入y=得,t=6,
∴C点坐标为(6,2),
又∵等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上且B(3,2),
∴BC=3,ED=OF=3,
∴OD=OF+EF+ED=9,而CE=2,
∴S梯形OBCD=×(9+3)×2=12.
解析分析:(1)先把A(1,6)代入y=可求出k2=6,则反比例函数的解析式y=,然后把B(3,a)代入得a=2,确定B点坐标为(3,2),再利用待定系数法确定一次函数的解析式,从而得到k1的值;
(2)观察图象得到当x<0或1<x<3时,一次函数的图象在反比例函数图象的上方;
(3)设C(t,2),过B作BF⊥x轴于F点,由点P为CE的中点得到P(t,1),又由点P在反比例函数y=的图象上,易得C点坐标为(6,2),再利用OB=CD,OD边在x轴上且B(3,2),得到BC=3,ED=OF=3,则OD=OF+EF+ED=9,而CE=2,然后根据梯形的面积公式计算即可.

点评:本题考查了反比例函数的综合题:利用待定系数法确定反比例和一次函数的解析式;学会观察函数图象,从图象中获取信息;利用点的坐标和等腰梯形的性质求出某些线段的长度.
以上问题属网友观点,不代表本站立场,仅供参考!