如图,在平面直角坐标系中,线段OA1=1,OA1与x轴的夹角为30°,线段A1A2=1,A2A1⊥OA1,垂足为A1;线段A2A3=1,A3A2⊥A1A2,垂足为A2;线段A3A4=1,A4A3⊥A2A3,垂足为A3;…按此规律,点A2012的坐标为________.
网友回答
(503-503,503+503)
解析分析:过点A1作A1B⊥x轴,作A1C∥x轴A2C∥y轴,相交于点C,然后求出点A1的坐标,以及A1C、A2C的长度,并出A2、A3、A4、A5、A6的坐标,然后总结出点的坐标的变化规律,再把2012代入规律进行计算即可得解.
解答:解:如图,过点A1作A1B⊥x轴,作A1C∥x轴A2C∥y轴,相交于点C,∵OA1=1,OA1与x轴的夹角为30°,∴OB=OA1?cos30°=1×=,A1B=OA1?sin30°=1×=,∴点A1的坐标为(,),∵A2A1⊥OA1,OA1与x轴的夹角为30°,∴∠OA1C=30°,∠A2A1C=90°-30°=60°,∴∠A1A2C=90°-60°=30°,同理可求:A2C=OB=,A1C=A1B=,所以,点A2的坐标为(-,+),点A3的坐标为(-+,++),即(-,+1),点A4的坐标为(--,+1+),即(-1,+1),点A5的坐标为(-1+,+1+),即(-1,+),点A6的坐标为(-1-,++),即(-,+),…,当n为奇数时,点An的坐标为(-,+),当n为偶数时,点An的坐标为(-,+),所以,当n=2012时,-=503-503,+=503+503,点A2012的坐标为(503-503,503+503).故