已知直线y=kx+b(k<0)与x、y轴交于A、B两点,且与双曲线交于点C(m,2),若△AOB的面积为4,求△BOC的面积.
网友回答
解:在双曲线的解析式中,
令y=2,
∴m=-1,
把点(-1,2)代入已知直线y=kx+b,
解得-k+b=2①
在y=kx+b中,令x=0,得到y=b,
∴OB=|b|,
在函数解析式中令y=0,
解得x=-,
根据△AOB的面积为4,
得到|b|?=8,
根据k<0,得到b2=-8k②,
联立①②得,
∴b=-4-4或-4+4,
∴OB=4+4或-4+4,
则△BOC的面积是×(4+4)×1=2+2或×(-4+4)×1=-2+2.
答:△BOC的面积是2+2或-2+2.
解析分析:把C(m,2)代入双曲线的解析式,求出m的值,得到C的坐标,代入就得到一个关于k,b的方程;根据△AOB的面积为4,可以得到一个关于k,b的方程,解这两个方程组成的方程组,就可以求出B点的坐标,因而求出△BOC的面积.
点评:本题主要考查了利用待定系数法求函数解析式,以及函数图象上的点与解析式的关系,图象上的点一定满足函数解析式.