如图,在△ABC中,AB=AC,BE⊥AC,D是AB中点,且DE=BE=AB.则∠C的度数是A.65°B.70°C.75°D.80°
网友回答
C
解析分析:根据已知条件“BE⊥AC,且D为AB中点”知,DE是直角三角形ABE斜边上的中线,所以由直角三角形斜边上的中线等于斜边的一半得到BD=DE=AD;然后由30°角所对的直角边等于斜边的一半求得∠A=30°;最后根据△ABC的内角和是180°、两个底角∠ABC=∠C,求得∠C的度数.
解答:∵BE⊥AC(已知),且D为AB中点,∴DE为直角三角形ABE斜边上的中线,∴BD=DE=AD(直角三角形斜边上的中线等于斜边的一半);又∵BE=DE∴BE=AB(等量代换);∴∠A=30°;在△ABC中,AB=AC,∴∠ABC=∠C(等边对等角),∴∠C=×(180°-30°)=75°(三角形内角和定理).故选C.
点评:本题考查了等腰三角形的性质、含30°角的直角三角形以及直角三角形斜边上的中线.解答该题时,注意充分利用隐含在题干中的已知条件:△ABC的内角和是180°.