解方程x2-x+1=0,正确的解法是A.(x-)2=,x=±B.(x-)2=-,原方程无解C.(x-)2=,x1=+,x2=D.(x-)2=1,x1=,x2=-

发布时间:2020-07-30 05:42:41

解方程x2-x+1=0,正确的解法是A.(x-)2=,x=±B.(x-)2=-,原方程无解C.(x-)2=,x1=+,x2=D.(x-)2=1,x1=,x2=-

网友回答

B
解析分析:首先进行移项,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式.

解答:∵x2-x+1=0∴x2-x=-1∴x2-x+=-1+∴(x-)2=-,∴原方程无解故选B.

点评:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
以上问题属网友观点,不代表本站立场,仅供参考!