f(x)=(cosx)^4-2sinxcosx-(sinx)^4求 1.最小正周2.当X在[0,π/

发布时间:2021-03-15 04:45:48

f(x)=(cosx)^4-2sinxcosx-(sinx)^4求 1.最小正周2.当X在[0,π/2]时求F(X)的最小

网友回答

1、f(x)=(cos²x+sin²x)(cos²x-sin²x)-2sinxcosx
=1*cos2x-sin2x
=-(sin2x-cos2x
=-√2sin(2x-π/4)
所以T=2π/2=π
2、0======以下答案可供参考======
供参考答案1:
1.因为 f(x)=(cosx)^4-2sinxcosx-(sinx)^4
=[(cosx)^2+(sinx)^2][(cosx)^2-(sinx)^2]-2sinxcosx
=(cosx)^2-(sinx)^2-2sinxcosx (应用倍角公式)
=cos2x-sin2x
=根号2*cos(2x+45度)
所以函数的最小正周期为 2pi/2=pi. 其中pi表示圆周率。
2.因为0当2x+pai/4=pai/4 时, 取得最大值 sqr2/2;
当 2x+pai/4=pai时, cos(2x+pai/4)取得最小值-1.
所以f(x) 在[0,pai/2] 上的最大值为1,最小值为-√2
供参考答案2:
原式=(1-(sinx)^2)^2-2sinxcosx-(sinx)^4
=1+(sinx)^4-2(sinx)^2-2sinxcosx-(sinx)^4
=1-2(sinx)^2-2sinxcosx
=cos2x-sin2x
=√2cos(2x+π/4)
T=2π/2=π
最小在x=3/8π取得
为-√2(√为根号)
以上问题属网友观点,不代表本站立场,仅供参考!