二元函数的极值题 如图
网友回答
f'x=e^(x-y)(x^2-2y^2)+e^(x-y)*2x=e^(x-y)*(x^2-2y^2+2x)
f'y=-e^(x-y)(x^2-2y^2)-e^(x-y)*4y=-e^(x-y)*(x^2-2y^2+4y)
A=fxx=e^(x-y)(x^2-2y^2+4x+2)
C=fyy=-e^(x-y)(x^2-2y^2+8y-4)
B=fxy=-e^(x-y)(x^2-2y^2+2x+4y)
由f'x=f'y=0,得:
x^2-2y^2+2x=0 1)
x^2-2y^2+4y=0 2)
两式相减得:2x-4y=0,即x=2y
代入2)式得:4y^2-2y^2+4y=0,即y=0, -2
故x=0, -4
在点(0,0), A=2>0, C=4, B=0, B^2-AC