六?一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.
(1)求A、B两种品牌服装每套进价分别为多少元?
(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?
网友回答
解:(1)设A品牌服装每套进价为x元,则B品牌服装每套进价为(x-25)元,由题意得:
=×2,
解得:x=100,
经检验:x=100是原分式方程的解,
x-25=100-25=75,
答:A、B两种品牌服装每套进价分别为100元、75元;
(2)设购进A品牌的服装a套,则购进B品牌服装(2a+4)套,由题意得:
(130-100)a+(95-75)(2a+4)>1200,
解得:a>16,
答:至少购进A品牌服装的数量是17套.
解析分析:(1)首先设A品牌服装每套进价为x元,则B品牌服装每套进价为(x-25)元,根据关键语句“用2000元购进A种服装数量是用750元购进B种服装数量的2倍.”列出方程,解方程即可;
(2)首先设购进A品牌的服装a套,则购进B品牌服装(2a+4)套,根据“可使总的获利超过1200元”可得不等式(130-100)a+(95-75)(2a+4)>1200,再解不等式即可.
点评:本题考查了分式方程组的应用和一元一次不等式的应用,弄清题意,表示出A、B两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.