如图所示,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB、OC为邻边作第1个平行四边形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻

发布时间:2020-08-08 15:24:24

如图所示,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB、OC为邻边作第1个平行四边形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1、O1C1为邻边作第3个平行四边形O1B1B2C1…依此类推.
(1)求矩形ABCD的面积;
(2)求第1个平行四边形OBB1C,第2个平行四边形和第6个平行四边形的面积.

网友回答

解:(1)∵四边形ABCD是矩形,AC=20,AB=12
∴∠ABC=90°,BC===16
∴S矩形ABCD=AB?BC=12×16=192.

(2)∵OB∥B1C,OC∥BB1,
∴四边形OBB1C是平行四边形.
∵四边形ABCD是矩形,
∴OB=OC,
∴四边形OBB1C是菱形.
∴OB1⊥BC,A1B=BC=8,OA1=OB1==6;
∴OB1=2OA1=12,
∴S菱形OBB1C=BC?OB1=×16×12=96;
同理:四边形A1B1C1C是矩形,
∴S矩形A1B1C1C=A1B1?B1C1=6×8=48;
‥‥‥
第n个平行四边形的面积是:
∴S6==3.
解析分析:(1)直角三角形ABC中,有斜边的长,有直角边AB的长,BC的值可以通过勾股定理求得,有了矩形的长和宽,面积就能求出了.
(2)不难得出OCB1B是个菱形.那么它的对角线垂直,它的面积=对角线积的一半,我们发现第一个平行四边形的对角线正好是原矩形的长和宽,那么第一个平行四边形的面积是原矩形的一半,依此类推第n个平行四边形的面积就应该是×原矩形的面积.由此可得出第2个和第6个平行四边形的面积.

点评:本题综合考查了平行四边形的性质,菱形的性质和勾股定理等知识点的综合运用,本题中找四边形的面积规律是个难点.
以上问题属网友观点,不代表本站立场,仅供参考!