如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于A.B.C.D.

发布时间:2020-07-29 23:50:55

如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于A.B.C.D.

网友回答

B
解析分析:连接OP,过D作DM⊥AC于M,求出AC长,根据三角形的面积公式求出CM的值,根据S△AOD=S△APO+S△DPO代入求出PE+PF=DM即可.

解答:连接OP,过D作DM⊥AC于M,∵四边形ABCD是矩形,∴AO=OC=AC,OD=OB=BD,AC=BD,∠ADC=90°∴OA=OD,由勾股定理得:AC==5,∵S△ADC=×3×4=×5×DM,∴DM=,∵S△AOD=S△APO+S△DPO,∴(AO×DM)=(AO×PE)+(DO×PF),即PE+PF=DM=,故选B.

点评:本题考查了矩形的性质、三角形的面积公式、勾股定理的应用,关键是求出PE+PF=DM.
以上问题属网友观点,不代表本站立场,仅供参考!