如图,已知在四边形ABCD中,AC⊥AB,BD⊥CD,AC与BD相交于点E,S△AED=9,S△BEC=25.
(1)求证:∠DAC=∠CBD;
(2)求cos∠AEB的值.
网友回答
(1)证明:∵AC⊥AB,BD⊥CD,
∴∠BAC=∠BDC=90°,
又∵∠AEB=∠DEC,
∴△ABE∽△DCE,
∴=,即=,
又∵∠AED=∠BEC,
∴△AED∽△BEC,
∴∠DAC=∠CBD;
(2)解:∵△AED∽△BEC,S△AED=9,S△BEC=25,
∴==,
∴在Rt△ABE中,cos∠AEB==.
解析分析:(1)先由∠BAC=∠BDC=90°与∠AEB=∠DEC,证得△ABE∽△DCE;即可证得=,又由∠AED=∠BEC,证得△AED∽△BEC,故可得出∠DAC=∠CBD;
(2)由(1)知△AED∽△BEC,根据相似三角形面积的比等于相似比的平方,即可求得AE与BE的比值,由锐角三角函数的定义即可得出结论.
点评:本题考查的是相似三角形的判定与性质,先根据题意得出△ABE∽△DCE是解答此题的关键.