如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线相交于点E,∠ADC=60°.(1)求证:△ADE是等腰三角形;(2)若AD=2,求BE的长.

发布时间:2020-07-30 07:51:39

如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线相交于点E,∠ADC=60°.
(1)求证:△ADE是等腰三角形;
(2)若AD=2,求BE的长.

网友回答

(1)证明:连接OD,∵CD是⊙O的切线,
∴OD⊥CD,即∠ODC=90°,
∵∠ADC=60°,
∴∠ODA=30°,
在⊙O中OA=OD,
∴∠OAD=∠ODA=30°,
∴∠E=∠ADC-∠EAD=60°-30°=30°=∠EAD,
∴DA=DE,
即△ADE是等腰三角形.

(2)解:由(1)知,DE=DA=,
在Rt△ODE中,,
OE=2OD=4,
∴BE=OE-OB=OE-OD=4-2=2,
答:BE的长是2.

解析分析:(1)连接OD,根据CD是⊙O的切线,推出∠ODC=90°,求出∠OAD=∠ODA=30°,根据三角形的外角性质求出∠E=∠A,即可得出
以上问题属网友观点,不代表本站立场,仅供参考!