如图1,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的公式是A.a2+b2=(a+b)(a-

发布时间:2020-07-29 13:17:36

如图1,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的公式是A.a2+b2=(a+b)(a-b)B.a2-b2=(a+b)(a-b)C.(a+b)2=a2+2ab+b2D.(a-b)2=a2-2ab+b2

网友回答

B

解析分析:根据左图中阴影部分的面积是a2-b2,右图中梯形的面积是(2a+2b)(a-b)=(a+b)(a-b),利用面积相等即可解答.

解答:∵左图中阴影部分的面积是a2-b2,右图中梯形的面积是(2a+2b)(a-b)=(a+b)(a-b),∴a2-b2=(a+b)(a-b).故选:B.

点评:此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!