如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC

发布时间:2021-02-27 00:41:59

如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=

网友回答

楼上的回答的不对.
正确答案如下:
延长EF交PC延长线于点O
因为 E,F分别是边AB和BC的中点
所以 EF为三角形ABC中位线
EF平行AC EF=1/2AC
因为 在菱形ABCD中,AB平行CD,AC平分∠BAD(后面会用到)
所以 在四边形AEOC中,AE平行OC,AC=EO(后面会用到)
所以 四边形AEOC为平行四边形
因为 ∠BAD=100°
所以 ∠BAC=1/2∠BAD=50°
所以 ∠EOC=∠BAC=50°
因为 EF=1/2AC
所以 EF=OF
所以 PF为三角形EPO中线
因为 EP⊥CD于点P
所以 ∠EPO=90°
所以 三角形EPO为Rt三角形
所以 PF=OF(直角三角形斜边上的中线等于斜边的一半)
所以 三角形FPO为等腰三角形
所以 ∠FPC=∠EOP=50°
为了讲明白答案比较详细,使用时可适当从简.
======以下答案可供参考======
供参考答案1:
因为∠A=100°,所以 ∠B=80°
因为 E,F分别是边AB和BC的中点
所以∠BFE=∠BEF=(180-80)÷2=50°
因为EP⊥CD所以 ∠PFC=40°
∠C=∠A=100°
所以∠FPC=180°-∠PFC-∠C=180°-100-40=40°
供参考答案2:
https://zhidao.baidu./question/160166868.html
以上问题属网友观点,不代表本站立场,仅供参考!