在△ABC中,关于x的方程(1+x2)sinA+2xsinB+(1-x2)sinC=0有两个不等的实根,则A为
A.锐角
B.直角
C.钝角
D.不存在
网友回答
A解析分析:△ABC中,由一元二次方程的判别式大于零以及正弦定理求得 b2+c2-a2>0,再由余弦定理可得 cosA>0,从而得到A为锐角.解答:在△ABC中,关于x的方程(1+x2)sinA+2xsinB+(1-x2)sinC=0有两个不等的实根,即(sinA-sinC)x2+2sinB x+(sinA+sinC)=0 有两个不等的实根,∴△=4sin2B-4 (sin2A-sin2C)>0,由正弦定理可得 b2+c2-a2>0,再由余弦定理可得 cosA=>0,故A为锐角,故选A.点评:本题主要考查一元二次方程根与系数的关系,正弦定理、余弦定理的应用,属于中档题.