解答题若(3x-1)7=a7x7+a6x6+…a1x+a0,求:(1)a1+a

发布时间:2020-07-28 18:12:16

解答题若(3x-1)7=a7x7+a6x6+…a1x+a0,求:
(1)a1+a2+…+a7;
(2)a1+a3+a5+a7;
(3)a0+a2+a4+a6.

网友回答

解:(1)∵(3x-1)7=a7x7+a6x6+…a1x+a0,
∴令x=1,得:(3×1-1)7=a7+a6+…a1+a0=27,①
又a0=?(-1)7=-1.
∴a1+a2+…+a7=27+1=129;
(2)在(3x-1)7=a7x7+a6x6+…a1x+a0中,
令x=-1,则-a7+a6-a5+a4-…+a0=(-4)7②
由①-②得:2(a1+a3+a5+a7)=27-(-4)7,
∴a1+a3+a5+a7=8256.
(3)由①+②得:2(a0+a2+a4+a6)=27+(-4)7,
∴a0+a2+a4+a6=-8128.解析分析:依题意,可先求得a0=-1,再利用赋值法即可求得(1),(2),(3)的
以上问题属网友观点,不代表本站立场,仅供参考!