已知如图射线AB∥CD,P为一动点,∠BAP与∠DCP的平分线AE与CE交于点E(1)当P运动到线段AC上时,∠APC=180°(图1),此时∠AEC为多少度?(不要

发布时间:2020-08-06 22:48:24

已知如图射线AB∥CD,P为一动点,∠BAP与∠DCP的平分线AE与CE交于点E
(1)当P运动到线段AC上时,∠APC=180°(图1),此时∠AEC为多少度?(不要求证明)
(2)当P运动到如图2的位置时,猜想∠AEC与∠APC?的关系,并说明理由?
(3)当P运动到如图3的位置时,上述结论还成立吗?(不要求说明理由)

网友回答

解:(1)过E作EF∥AB,
∵AB∥CD,
∴∠BAC+∠DCA=180°,
∵∠BAP与∠DCP的平分线AE与CE交于点E,
∴∠BAE=∠EAC,∠DCE=∠ACE,
∴∠BAE+∠CEF=90°;
∴∠AEC=180°,此时∠AEC为90度;

(2)作EM∥BA,PN∥BA,
∴∠BAE=∠AEM,∠MEC=∠ECD,
∠APN=∠BAP,∠NPC=∠PCD,
∵∠BAE=∠EAP,∠PCE=∠ECD,
又∵∠AEC=∠AEM+∠MEC,∠APC=∠APN+∠NPC,
∴∠AEC=∠APC;

(3)作EW∥AB,EP∥AB,
同理即可得出:2∠AEC=360°-∠APC,
∴∠AEC=180°-∠APC.
解析分析:(1)根据∠BAP与∠DCP的平分线AE与CE交于点E,即可得出∠BAE=∠EAC,∠DCE=∠ACE,再利用平行线的性质求出即可;
(2)作EM∥BA,PN∥BA,根据平行的传递性,再根据两直线平行内错角相等的性质可求;
(3)根据平行的传递性,再根据两直线平行内错角相等的性质以及平角性质即可求出.

点评:此题主要考查了平行线的性质以及平行线的传递性等知识,解题的关键是正确作出辅助线,然后根据两直线平行内错角相等的性质解此类题.
以上问题属网友观点,不代表本站立场,仅供参考!