如图,E、D分别是AC、AB上的一点,∠EBC、∠BCD的角平分线交于点M,∠BED、∠EDC的角平分线交于N.
求证:A、M、N在一条直线上.
网友回答
证明:过点N作NF⊥AB于F,NH⊥ED于H,NK⊥AC于K;过点M作MJ⊥BC于J,MP⊥AB于P,MQ⊥AC于Q.
∵EN平分∠BED,DN平分∠EDC,
∴NF=NH,NH=NK,
∴NF=NK,
∴N在∠A的平分线上.
∵BM平分∠ABC,CM平分∠ACB
∴MP=MJ,MQ=MJ,
∴MP=MQ,
∴M在∠A的平分线上.
∵M、N都在∠A的平分线上,
∴A、M、N在一条直线上.
解析分析:过点N作NF⊥AB于F,NH⊥ED于H,NK⊥AC于K;过点M作MJ⊥BC于J,MP⊥AB于P,MQ⊥AC于Q.根据角平分线的性质可得NF=NH,NH=NK,则NF=NK,即N在∠A的平分线上.同理,M在∠A的平分线上,即可得出结论.
点评:此题主要考查角平分线的性质以及逆定理,作辅助线是关键.