矩形OABC在平面直角坐标系中的位置如图所示,O为坐标原点,OA与y轴重合,OC与x轴重合,M为BC上点,沿AM折叠矩形使得点B′落在OC上,且知OA=6,OB′=8

发布时间:2020-08-07 05:45:38

矩形OABC在平面直角坐标系中的位置如图所示,O为坐标原点,OA与y轴重合,OC与x轴重合,M为BC上点,沿AM折叠矩形使得点B′落在OC上,且知OA=6,OB′=8,则点M坐标是________.

网友回答

(10,)
解析分析:在直角△OAB′中利用勾股定理即可求得AB′的长,则M的横坐标可以求得,设CM=x,则BM=B′M=6-x,直角△B′CM中利用勾股定理即可列方程求得x的值,从而求得M的纵坐标.

解答:在直角△OAB′中,AB′===10,
则AB=AB′=10,即M的横坐标是10;
设CM=x,则BM=B′M=6-x,
在直角△B′CM中,B′C=OC-OB′=10-8=2,
B′M2=B′C2+CM2,
则(6-x)2=22+x2,
解得:x=.
故M的坐标是(10,).

点评:本题考查的是图形折叠的性质,熟知图形翻折不变性的性质是解答此题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!