如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.

发布时间:2020-08-07 05:45:03

如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.
求证:
(1)PE=PF;
(2)点P在∠BAC的角平分线上.

网友回答

证明:(1)如图,连接AP并延长,
∵PE⊥AB,PF⊥AC
∴∠AEP=∠AFP=90°
又AE=AF,AP=AP,
∵在Rt△AFP和Rt△AEP中

∴Rt△AEP≌Rt△AFP(HL),
∴PE=PF.

(2)∵Rt△AEP≌Rt△AFP,
∴∠EAP=∠FAP,
∴AP是∠BAC的角平分线,
故点P在∠BAC的角平分线上.
解析分析:(1)连接AP,根据HL证明△APF≌△APE,可得到PE=PF;
(2)利用(1)中的全等,可得出∠FAP=∠EAP,那么点P在∠BAC的平分线上.

点评:本题考查了三角形全等的判定和性质,以及角平分线的有关知识,作射线AP是解答本题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!