如图ABCD是边长为a的正方形,以D为圆心,DA为半径的圆弧与以BC为直径的半圆交于另一点P,延长AP交BC于点N,则=________.

发布时间:2020-08-08 13:31:59

如图ABCD是边长为a的正方形,以D为圆心,DA为半径的圆弧与以BC为直径的半圆交于另一点P,延长AP交BC于点N,则=________.

网友回答


解析分析:设点S为BC的中点,连接,DP,DS,DS与PC交于点W,作PE⊥BC于点E,PF⊥AB于点F,从而可证△DCS≌△DPS,也推∠DPS=∠DCB=90°,然后求出PC,再根据勾股定理求出PB,利用三角形的面积,求得PE,利用勾股定理求得PF,利用相似求得BN的长,即可解答出.

解答:解:如图,设点S为BC的中点,连接DP,DS,DS与PC交于点W,作PE⊥BC于点E,PF⊥AB于点F,
∴DP=CD=a,PS=CS=a,即DS是PC的中垂线,
∴△DCS≌△DPS,
∴∠DPS=∠DCB=90°,
∴DS===a,
由三角形的面积公式可得PC=a,
∵BC为直径,
∴∠CPB=90°,
∴PB==a,
∴PE=FB==a,
∴PF=BE==a,
∴AF=AB-FB=a,
∴=,即=,
∴BN=a,
∴NC=a,
∴=;
以上问题属网友观点,不代表本站立场,仅供参考!