求函数f(x)=x2-2ax-1在[0,2]上的值域.

发布时间:2020-08-07 07:12:46

求函数f(x)=x2-2ax-1在[0,2]上的值域.

网友回答

解:∵函数f(x)的图象开口向上,对称轴为x=a
①当a<0时,函数f(x)在[0,2]上单调递增
∴f(x)max=f(2)=3-4a,f(x)min=f(0)=-1
值域为[-1,3-4a]…
②当0≤a<1时,函数f(x)在[0,a]上单调递减,在[a,2]上单调递增
∴f(x)max=f(2)=3-4a,f(x)min=f(a)=-1-a2
值域为[-a2-1,3-4a]…
③当1≤a<2时函数f(x)在[0,a]上单调递减,在[a,2]上单调递增
∴f(x)max=f(0)=-1,f(x)min=f(a)=-1-a2
值域为[-a2-1,-1]…
④当a≥2时,函数f(x)在[0,2]上单调递减
∴f(x)max=f(0)=-1,f(x)min=f(,2)=3-4a
值域为[3-4a,1]
解析分析:先判断二次函数的开口方向及对称轴,然后根据对称轴与已知区间的位置关系进行求解函数的最值,进而可求值域

点评:本题主要考查了二次函数在闭区间上的最值的求解,解题的关键是确定函数的对称轴与区间的位置关系,体现了分类讨论思想的应用.
以上问题属网友观点,不代表本站立场,仅供参考!