如图,已知抛物线y2=2px(p>0)的焦点F恰好是双曲线=1(a>0,b>0)的右焦点,且两条曲线交点的连线过点F,则该双曲线的离心率为
A.
B.2
C.
D.
网友回答
C解析分析:先根据抛物线方程及两条曲线交点的连线过点F得到交点坐标,代入双曲线,把=c代入整理得 c4-6a2c2+a4=0等式两边同除以a4,得到关于离心率e的方程,进而可求得e解答:由题意,∵两条曲线交点的连线过点F∴两条曲线交点为(,p),代入双曲线方程得-=1,又=c∴-4×=1,化简得 c4-6a2c2+a4=0∴e4-6e2+1=0∴e2=3+2=(1+)2∴e=+1故选C.点评:本题的考点是抛物线的简单性质,主要考查抛物线的应用,考查双曲线的离心率,解题的关键是得出a,c的方程.