如图,在△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交AC于D,过C作BD垂线交BD的延长线于E,交BA的延长线于F,求证:BD=2CE.

发布时间:2020-08-11 20:55:54

如图,在△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交AC于D,过C作BD垂线交BD的延长线于E,交BA的延长线于F,求证:BD=2CE.

网友回答

证明:∵∠ABC的平分线交AC于D,
∴∠FBE=∠CBE,
∵BE⊥CF,
∴∠BEF=∠BEC,
在△BFE和△BCE中

∴△BFE≌△BCE(ASA),
∴CE=EF,
∴CF=2CE,
∵∠BAC=90°,且AB=AC,
∴∠FAC=∠BAC=90°,∠ABC=∠ACB=45°,
∴∠FBE=∠CBE=22.5°,
∴∠F=∠ADB=67.5°,
又AB=AC,
在△ABD和△ACF中,

∴△ABD≌△ACF(AAS),
∴BD=CF,
∴BD=2CE.
解析分析:根据已知条件,易证△BFE≌△BCE,所以BF=BC,所以∠F=∠BCE,根据等腰三角形三线合一这一性质,CE=FE,再证明△ABD≌△ACF,证得BD=CF,从而证得BD=2CE.

点评:本题考查了等腰三角形的性质,解题的关键是熟练应用等边对等角以及等腰三角形三线合一的性质.
以上问题属网友观点,不代表本站立场,仅供参考!