已知函数(a>0,a≠1)是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明;
(3)当x∈(n,a-2)时,函数f(x)的值域是(1,+∞),求实数a与n的值.
网友回答
解:(1)∵函数(a>0,a≠1)是奇函数.
∴f(-x)+f(x)=0解得m=-1.
(2)由(1)及题设知:,
设,
∴当x1>x2>1时,
∴t1<t2.
当a>1时,logat1<logat2,即f(x1)<f(x2).
∴当a>1时,f(x)在(1,+∞)上是减函数.
同理当0<a<1时,f(x)在(1,+∞)上是增函数.
(3)由题设知:函数f(x)的定义域为(1,+∞)∪(-∞,-1),
∴①当n<a-2≤-1时,有0<a<1.由(1)及(2)题设知:f(x)在为增函数,由其值域为(1,+∞)知(无解);
②当1≤n<a-2时,有a>3.由(1)及(2)题设知:f(x)在(n,a-2)为减函数,由其值域为(1,+∞)知
得,n=1.
解析分析:(1)根据奇函数的定义可知f(-x)+f(x)=0,建立关于m的等式关系,解之即可;(2)先利用函数单调性的定义研究真数的单调性,讨论a的取值,然后根据复合函数的单调性进行判定;(3)先求函数的定义域,讨论(n,a-2)与定义域的关系,然后根据单调性建立等量关系,求出n和a的值.
点评:本题主要考查了函数的奇偶性,以及函数的单调性和值域问题,属于基础题.