如图,在菱形ABCD中,AE⊥BC,E为垂足,若cosB=,EC=2,P是AB边上的一个动点,则线段PE的长度的最小值是________.
网友回答
4.8
解析分析:设菱形ABCD的边长为x,则AB=BC=x,又EC=2,所以BE=x-2,解直角△ABE即可求得x的值,即可求得BE、AE的值,根据AB、PE的值和△ABE的面积,即可求得PE的最小值.
解答:解:设菱形ABCD的边长为x,则AB=BC=x,又EC=2,所以BE=x-2,因为AE⊥BC于E,所以在Rt△ABE中,cosB=,又cosB=,于是,解得x=10,即AB=10.所以易求BE=8,AE=6,当EP⊥AB时,PE取得最小值.故由三角形面积公式有:AB?PE=BE?AE,求得PE的最小值为4.8.故