已知函数f(x)=ax²+3a为偶函数,定义域为[a-1,2a],求f(x)的最大值和最小

发布时间:2021-03-15 05:17:55

已知函数f(x)=ax²+3a为偶函数,定义域为[a-1,2a],求f(x)的最大值和最小值 明白点的过程

网友回答

因为 f(x)是偶函数
所以定义域关于原点对称
所以a-1+2a=0
a=1/3 f(x)=(1/3)*x^2 +1 x∈【-2/3 ,2/3】
f(x)min= f(0)=1
f(x)max=f(2/3)=31/27
以上问题属网友观点,不代表本站立场,仅供参考!