对于各项均为整数的数列{an},如果ai+i(i=1,2,3,…)为完全平方数,则称数列{an}具有“P性质”.不论数列{an}是否具有“P性质”,如果存在与{an}

发布时间:2020-07-31 22:21:02

对于各项均为整数的数列{an},如果ai+i(i=1,2,3,…)为完全平方数,则称数列{an}具有“P性质”.不论数列{an}是否具有“P性质”,如果存在与{an}不是同一数列的{bn},且{bn}同时满足下面两个条件:
①b1,b2,b3,…,bn是a1,a2,a3,…,an的一个排列;
②数列{bn}具有“P性质”,则称数列{an}具有“变换P性质”.
下面三个数列:
①数列{an}的前n项和;
②数列1,2,3,4,5;
③1,2,3,…,11.
具有“P性质”的为________;具有“变换P性质”的为________.

网友回答

①    ②
解析分析:对于①,求出数列{an}的通项,验证ai+i=i2(i=1,2,3,…)为完全平方数,可得结论;对于②,数列1,2,3,4,5,具有“变换P性质”,数列{bn}为3,2,1,5,4,具有“P性质”;对于③,因为11,4都只有与5的和才能构成完全平方数,所以1,2,3,…,11,不具有“变换P性质”.

解答:对于①,当n≥2时,an=Sn-Sn-1=n2-n∵a1=0,∴∴ai+i=i2(i=1,2,3,…)为完全平方数∴数列{an}具有“P性质”;对于②,数列1,2,3,4,5,具有“变换P性质”,数列{bn}为3,2,1,5,4,具有“P性质”,∴数列{an}具有“变换P性质”;对于③,因为11,4都只有与5的和才能构成完全平方数,所以1,2,3,…,11,不具有“变换P性质”.故
以上问题属网友观点,不代表本站立场,仅供参考!