已知数列{an}的各项均为正数,记A(n)=a1+a2+…+an,B(n)=a2+a3+…+an+1,C(n)=a3+a4+…+an+2,n=1,2,….
(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式.
(2)证明:数列{an}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.
网友回答
解:(1)∵对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,
∴B(n)-A(n)=C(n)-B(n),
即an+1-a1=an+2-a2,亦即an+2-an+1=a2-a1=4.
故数列{an}是首项为1,公差为4的等差数列,于是an=1+(n-1)×4=4n-3.
(2)证明:(必要性):若数列{an}是公比为q的等比数列,对任意n∈N*,有an+1=anq.由an>0知,A(n),B(n),C(n)均大于0,于是
===q,
===q,
即==q,
∴三个数A(n),B(n),C(n)组成公比为q的等比数列;
(充分性):若对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,则
B(n)=qA(n),C(n)=qB(n),
于是C(n)-B(n)=q[B(n)-A(n)],即an+2-a2=q(an+1-a1),亦即an+2-qan+1=a2-qa1.
由n=1时,B(1)=qA(1),即a2=qa1,从而an+2-qan+1=0.
∵an>0,
∴==q.故数列{an}是首项为a1,公比为q的等比数列.
综上所述,数列{an}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.
解析分析:(1)由于对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,可得到B(n)-A(n)=C(n)-B(n),即an+1-a1=an+2-a2,整理即可得数列{an}是首项为1,公差为4的等差数列,从而可得an.(2)必要性:由数列{an}是公比为q的等比数列,可证得即==q,即必要性成立;充分性:若对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,可得an+2-qan+1=a2-qa1.由n=1时,B(1)=qA(1),即a2=qa1,从而an+2-qan+1=0,即充分性成立,于是结论得证.
点评:本题考查等差数列的性质,考查充要条件的证明,考查等比关系的确定,突出化归思想,逻辑思维与综合运算能力的考查,属于难题.