如图,MN是⊙O的直径,点A是半圆上的三等分点,点B是劣弧AN的中点,点P是直径MN上一动点.若MN=2,则PA+PB的最小值是A.2B.C.1D.2

发布时间:2020-07-30 08:52:25

如图,MN是⊙O的直径,点A是半圆上的三等分点,点B是劣弧AN的中点,点P是直径MN上一动点.若MN=2,则PA+PB的最小值是A.2B.C.1D.2

网友回答

D
解析分析:本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.

解答:解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,OA,OB,PA,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=,∴A′B=2.∴PA+PB=PA′+PB=A′B=2.故选D.

点评:本题结合图形的性质,考查轴对称--最短路线问题.其中求出∠BOC的度数是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!