如图,一次函数y=ax+b与x轴,y轴交于A,B两点,与反比例函数y=相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE,EF.有下列四个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.其中正确的结论个数是A.1B.2C.3D.4
网友回答
C
解析分析:设D(x,),得出F(x,0),根据三角形的面积求出△DEF的面积,同法求出△CEF的面积,即可判断①;根据面积相等,推出边EF上的高相等,推出CD∥EF,根据相似三角形的判定判断②即可;根据全等三角形的判定判断③即可;证出平行四边形BDFE和平行四边形ACEF,推出△ACF和△BDE的面积相等,根据三角形的面积公式推出BD=AC即可.
解答:①设D(x,),则F(x,0),由图象可知x>0,k>0,∴△DEF的面积是××x=k,同理可知:△CEF的面积是k,∴△CEF的面积等于△DEF的面积,∴①正确;②即△CEF和△DEF以EF为底,则两三角形EF边上的高相等,∴EF∥CD,即AB∥EF,∴△AOB∽△FOE,∴②正确;③条件不足,无法证出两三角形全等的条件,∴③错误;④∵BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,同理EF=AC,∴AC=BD,∴④正确;正确的有3个,故选C.
点评:本题考查了平行四边形的性质和判定,三角形的面积,全等三角形的判定,相似三角形的判定等知识点的运用,关键是检查学生综合运用定理进行推理的能力,题目具有一定的代表性,有一定的难度,是一道比较容易出错的题目.