对于一元二次方程ax2+bx+c=0(a≠0),下列说法:
①若b=2,则方程ax2+bx+c=0一定有两个相等的实数根;
②若方程ax2+bx+c=0有两个不等的实数根,则方程x2-bx+ac=0也一定有两个不等的实数根;
③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;
④若x0是一元二次方程ax2+bx+c=0的根,则b2-4ac=(2ax0+b)2,其中正确的A.只有①②③B.只有①②④C.①②③④D.只有③④
网友回答
B
解析分析:判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.④难度较大,用到了求根公式表示x0.
解答:①若b=2,方程两边平方得b2=4ac,即b2-4ac=0,所以方程ax2+bx+c=0一定有两个相等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则b2-4ac>0方程x2-bx+ac=0中根的判别式也是b2-4ac=0,所以也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac2+bc+c=0成立,当c≠0时ac+b+1=0成立;当c=0时ac+b+1=0不成立;④若x0是一元二次方程ax2+bx+c=0的根,可得x0=,把x0的值代入(2ax0+b)2,可得b2-4ac=(2ax0+b)2,综上所述其中正确的①②④.故选B
点评:此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示x0,整体代入求b2-4ac=(2ax0+b)2.总结:一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.