如图,在△ABC中,AB=AC=,BC=2,在BC上有50个不同的点P1,P2,…,P50,过这50个点分别作△ABC的内接矩形P1E1F1G1,P2E2F2G2,…,P50E50F50G50,每个内接矩形的周长分别为L1,L2,…,L50,则L1+L2+…+L50=________.
网友回答
200
解析分析:本题可过A作AD⊥BC于D,先找出每个△ABC的内接矩形与AD长的关系,再求这50个内接矩形的周长和.
解答:解:根据题意,过A作AD垂直于BC,交BC于点D;易得BD=1,设E1F1与AD交于M,则E1M=AM?tan∠BAD=AM,∴AM=E1F1,因此矩形E1F1G1P1的周长L1=2E1F1+2E1P=2AM+2DM=2AD=4,同理可求得△ABC其它的内接矩形的周长均为4,因此L1+L2+…+L50=4×50=200.故