(1)(-ab2c3)2?(a2b)3
(2)
(3)
(4).
网友回答
解:(1)(-ab2c3)2?(a2b)3
=a2b4c6?a6b3
=a8b7c6;
(2)(x-x2y)?(-12y)
=-4xy+9x2y2;
(3)不等式变形得:,
将②代入①得:x-3x=-1,解得:x=,
将x=代入②得:2y=,解得:y=,
∴;
(4)不等式去分母得:,
由①去括号得:4m-4=6n+9,即4m=6n+13,
代入②得:6n+13-3n=7,即3n=-6,
解得:n=-2,
将n=-2代入②得:4m+6=7,
解得:m=,
∴.
解析分析:(1)将原式两项分别利用积的乘方及幂的乘方法则计算,再利用单项式乘以单项式的法则及同底数幂的乘法法则计算,即可得到结果;
(2)利用乘法分配律将-12y乘到括号里边,然后利用单项式乘以单项式的法则计算即可得到结果;
(3)将方程组中第二个方程变形得到2y=3x,代入第一个方程中消去y得到关于x的方程,求出方程的解得到x的值,进而确定出y的值,得到原方程组的解;
(4)将方程组中第一个方程去分母后,再利用去括号法则去括号,整理后得到4m=6n+13,代入第二个方程中,消去m得到关于n的方程,求出方程的解得到n的值,进而确定出m的值,得到原方程组的解.
点评:此题考查了整式的混合运算,以及二元一次方程组的解法,涉及的知识有:积的乘方法则、幂的乘方法则,单项式乘以单项式的法则,利用了转化及消元的思想,是中考中常考的基本题型.