如图所示,点E在AB上,CE,DE分别平分∠BCD,∠ADC,∠1+∠2=90°,∠B=75°,求∠A的度数.
网友回答
解:∵∠1+∠2=90°,CE,DE分别平分∠BCD,∠ADC,
∴∠ADC+∠BCD=2(∠1+∠2)=180°,
∴AD∥BC,∴∠A+∠B=180°,
∵∠B=75°,
∴∠A=180°-75°=105°.
解析分析:根据已知条件∠1+∠2=90°,CE,DE分别为角平分线,可得一对同旁内角互补,证得AD∥BC;根据两直线平行,同旁内角互补由已知∠B的度数,即可求出∠A的度数.
点评:本题主要考查平分线的性质,由已知能够注意到AD∥BC,这是解题的关键.