如图,△ABC中,∠B=60°,∠ACB=75°,点D是BC边上一动点,以AD为直径作⊙O,分别交AB、AC于E、F,若弦EF的最小值为1,则AB的长为A.B.C.1

发布时间:2020-08-10 23:08:19

如图,△ABC中,∠B=60°,∠ACB=75°,点D是BC边上一动点,以AD为直径作⊙O,分别交AB、AC于E、F,若弦EF的最小值为1,则AB的长为A.B.C.1.5D.

网友回答

B
解析分析:首先连接OE,OF,过O点作OH⊥EF,垂足为H,可求得半径OE的长,又由当AD为△ABC的边BC上的高时,直径AD最短,即OE最小,则EF最小,可求得AD的长,由三角函数的性质,即可求得AB的长.

解答:解:如图,连接OE,OF,过O点作OH⊥EF,垂足为H,
∴EH=FH=EF=×1=,
∵在△ADB中,∠B=60°,∠ACB=75°,
∴∠BAC=45°,
∴∠EOF=2∠BAC=90°,
∵OE=OF,
∴∠EOH=∠EOF=45°,
∴OE==,
∵当AD为△ABC的边BC上的高时,直径AD最短,即OE最小,则EF最小,
∴AD=2OE=,
∴AB==.
故选B.

点评:此题考查了圆周角定理、勾股定理以及三角函数的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
以上问题属网友观点,不代表本站立场,仅供参考!