如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=________度.

发布时间:2020-08-11 13:32:57

如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=________度.

网友回答

72
解析分析:欲求∠CPB,可根据菱形、线段垂直平分线的性质、对称等方面去寻求解答方法.

解答:解:先连接AP,
由四边形ABCD是菱形,∠ADC=72°,
可得∠BAD=180°-72°=108°,
根据菱形对角线平分对角可得:∠ADB=∠ADC=×72°=36°,∠ABD=∠ADB=36度.
EP是AD的垂直平分线,由垂直平分线的对称性可得∠DAP=∠ADB=36°,
∴∠PAB=∠DAB-∠DAP=108°-36°=72度.
在△BAP中,∠APB=180°-∠BAP-∠ABP=180°-72°-36°=72度.
由菱形对角线的对称性可得∠CPB=∠APB=72度.

点评:本题开放性较强,解法有多种,可以从菱形、线段垂直平分线的性质、对称等方面去寻求解答方法,在这些方法中,最容易理解和表达的应为对称法,这也应该是本题考查的目的.灵活应用菱形、垂直平分线的对称性,可使解题过程更为简便快捷.
以上问题属网友观点,不代表本站立场,仅供参考!