如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.
(1)求证:EF是⊙O的切线;
(2)求证:AC2=AD?AB;
(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.
网友回答
(1)证明:连接OC,
∵OA=OC,
∴∠BAC=∠OCA,
∵∠DAC=∠BAC,
∴∠OCA=∠DAC,
∴OC∥AD,
∵AD⊥EF,
∴OC⊥EF,
∵OC为半径,
∴EF是⊙O的切线.
(2)证明:连接BC,
∵AB为⊙O直径,AD⊥EF,
∴∠BCA=∠ADC=90°,
∵∠DAC=∠BAC,
∴△ACB∽△ADC,
∴=,
∴AC2=AD?AB.
(3)解:∵∠ACD=30°,∠OCD=90°,
∴∠OCA=60°,
∵OC=OA,
∴△OAC是等边三角形,
∴AC=OA=OC=2,∠AOC=60°,
∵在Rt△ACD中,AD=AC=×2=1,
由勾股定理得:DC=,
∴阴影部分的面积是S=S梯形OCDA-S扇形OCA=×(2+1)×-=-π.
解析分析:(1)连接OC,根据OA=OC推出∠BAC=∠OCA=∠DAC,推出OC∥AD,得出OC⊥EF,根据切线的判定推出即可;(2)证△ADC∽△ACB,得出比例式,即可推出