如图,已知M是平行四边形ABCD中AB边的三等分点,BD与CM交于E,则阴影部分面积与平行四边形面积比为A.1:3B.1:4C.5:12D.7:24
网友回答
D
解析分析:设平行四边形的面积为1,则△DAM的面积=S△DAB=S?ABCD,而由于 ==,所以△EMB上的高线与△DAB上的高线比为 =,所以S△EMB=×S△DAB=,于是S△DEC=9S△MEB=,由此可以求出阴影面积,从而求出面积比为7:24.
解答:设平行四边形的面积为1,∵四边形ABCD是平行四边形,∴S△DAB=S?ABCD,又∵M是平行四边形ABCD中AB边的三等分点,则S△DAM=S△DAB=S?ABCD,而 ==,∴△EMB上的高线与△DAB上的高线比为:=,∴S△EMB=×S△DAB=,∴S△DEC=9S△MEB=,S阴影面积=1--=,则面积比为7:24.故选D.
点评:此题主要考查平行四边形的性质和相似比的内容,比较复杂,有一定的综合性.