如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.

发布时间:2020-07-30 07:54:23

如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.
求证:AE∥BC.

网友回答

证明:∵△ABC和△DEC是等边三角形,
∴BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°,
∴∠BCA-∠DCA=∠ECD-∠DCA,
即∠BCD=∠ACE,
∵在△ACE和△BCD中

∴△ACE≌△BCD(SAS),
∴∠EAC=∠B=60°=∠ACB,
∴AE∥BC.
解析分析:根据等边三角形性质推出BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°,求出∠BCD=∠ACE,根据SAS证△ACE≌△BCD,推出∠EAC=∠DBC=∠ACB,根据平行线的判定推出即可.

点评:本题考查了等边三角形性质,全等三角形的判定和性质,平行线的判定,关键是求出△ACE≌△BCD,主要考查学生的推理能力.
以上问题属网友观点,不代表本站立场,仅供参考!