已知关于x的方程x2-(k+2)x+2k=0.①小明同学说:无论k取何实数,方程总有实数根,你认为他说的有道理吗?②若等腰三角形的一边a=1,另两边b、c恰好是这个方

发布时间:2020-07-30 07:54:19

已知关于x的方程x2-(k+2)x+2k=0.
①小明同学说:无论k取何实数,方程总有实数根,你认为他说的有道理吗?
②若等腰三角形的一边a=1,另两边b、c恰好是这个方程的两个根,求△ABC的周长和面积.

网友回答

解:(1)∵△=(k+2)2-4×1×2k=k2+4k+4-8k=k2-4k+4=(k-2)2≥0,
∴方程无论k取何值,总有实数根,
∴小明同学的说法合理;
(2)①当b=c时,则△=0,
即(k-2)2=0,
∴k=2,
方程可化为x2-4x+4=0,
∴x1=x2=2,
而b=c=2,
∴C△ABC=5,S△ABC=;

②当b=a=1,
∵x2-(k+2)x+2k=0.
∴(x-2)(x-k)=0,
∴x=2或x=k,
∵另两边b、c恰好是这个方程的两个根,
∴k=1,
∴c=2,
∵a+b=c,
∴不满足三角形三边的关系,舍去;
综上所述,△ABC的周长为5.
解析分析:(1)计算方程的根的判别式即可说明其根的情况;(2)已知a=1,则a可能是底,也可能是腰,分两种情况求得b,c的值后,再求出△ABC的周长.注意两种情况都要用三角形三边关系定理进行检验.

点评:本题考查了根与系数的关系,一元二次方程总有实数根应根据判别式来做,两根互为相反数应根据根与系数的关系做,等腰三角形的周长应注意两种情况,以及两种情况的取舍.
以上问题属网友观点,不代表本站立场,仅供参考!