设函数f(x)=x2+bx+c(b、c为常数)的图象关于直线x=2对称,且图象过点(1,2),则有
A.f(3)-f(2)<f(3)<f(4)-f(3)
B.f(3)-f(2)>f(3)>f(4)-f(3)
C.f(3)<f(3)-f(2)<f(4)-f(3)
D.f(3)-f(2)<f(4)-f(3)<f(3)
网友回答
A解析分析:由图象关于x=2对称可求b值,再利用图象过点(1,2),可求c值,从而得到函数f(x)的表达式,进而可计算出f(3)-f(2),f(3),f(4)-f(3)的值.解答:∵函数f(x)的图象关于直线x=2对称,∴,b=-4,又图象过点(1,2),∴f(1)=2,得c=5,∴f(x)=x2-4x+5,∴f(3)-f(2)=(32-4×3+5)-(22-4×2+5)=1,f(3)=32-4×3+5=2,f(4)-f(3)=(42-4×4+5)-(32-4×3+5)=3.∴f(3)-f(2)<f(3)<f(4)-f(3).故选A.点评:本题考查了二次函数的图象及性质,数形结合是解决二次函数问题常用的思想方法.