解答题设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,O是坐标原点,且∠AOP=

发布时间:2020-07-09 02:30:34

解答题设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,O是坐标原点,且∠AOP=,∠AOQ=α,α∈[0,π).
(Ⅰ)若点Q的坐标是?(m,),求cos()的值;
(Ⅱ)设函数,求f(a)的值域.

网友回答

解:(Ⅰ)∵∠AOQ=α,Q是单位圆上两点,O是坐标原点,且Q(m,),
∴sinα=,m=cosα=,
∴cos()=cosαcos+sinαsin=,
(Ⅱ)由题意知,=(,),=(cosα,sinα),
∴=cosα+sinα=cosα+sinα=sin(),
∵0≤α<π,∴≤<,∴-<sin()≤1,
故f(a)的值域是(-,1].解析分析:(Ⅰ)根据题意和平方关系求出m的值,即由三角函数的定义求出α的正弦和余弦值,代入两角差的余弦公式进行求解;(Ⅱ)根据三角函数的定义求出和的坐标,由数量积的坐标表示求出函数的解析式,利用两角和的正弦公式进行化简,根据角α的范围求出的范围,利用正弦函数的性质求出函数的值域.点评:本题考查了三角函数求值和三角函数的值域,利用整体代入是常用的技巧,这里要分析已知和要求的结论之间的角的关系和三角函数名称之间的关系,需要利用三角函数的定义求出向量的坐标,是向量和三角函数结合的题目.
以上问题属网友观点,不代表本站立场,仅供参考!