已知:如图,在等边△ABC中,点D为AC上任意一点,且∠EDF=60°.求证:△CDE∽△AFD.

发布时间:2020-08-07 07:58:29

已知:如图,在等边△ABC中,点D为AC上任意一点,且∠EDF=60°.
求证:△CDE∽△AFD.

网友回答

证明:∵△ABC是等边三角形,
∴∠A=∠C=60°,
∴∠EDC+∠CED=120°,
∵∠EDF=60°,
∴∠FDA+∠EDC=120°,
∴∠CED=∠FDA,
∴△CDE∽△AFD.
解析分析:根据等边三角形的性质和相似三角形的判定方法证明即可.

点评:本题考查了等边三角形的性质和相似三角形的判定以及三角形的内角和定理,题目比较简单.
以上问题属网友观点,不代表本站立场,仅供参考!