如图,AB、AC为⊙O的切线,B、C是切点,延长OB到D,使BD=OB,连接AD,如果∠DAC=78°,那么∠ADO等于A.70°B.64°C.62°D.51°
网友回答
B
解析分析:连接OC.证明∠CAO=∠OAB=∠BAD,从而进一步求解.
解答:解:连接OC.则OC=OB,AC=AB,OA=OA,△AOC≌△AOB.∴∠CAO=∠BAO.∵AB是⊙O的切线,∴OB⊥AB.∵BD=OB,∴AB是线段OD的垂直平分线,OA=AD.∴∠OAB=∠DAB=∠OAC=×78°=26°.∠ADO=180°-∠ABD-∠DAB=180°-90°-26°=64°.故选B.
点评:本题考查了圆的切线性质,及等腰三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.