下面四个命题;
①相邻的两个角都互补的四边形是平行四边形
②对角线相等的四边形是矩形
③一组对边平行,另一组对边相等的四边形是平行四边形
④对角线互相垂直平分的四边形是菱形.
其中正确的是A.①④B.②④C.②③D.①③
网友回答
A
解析分析:①利用同旁内角互补,两直线平行,即可证得此四边形的两组对边分别平行,得平行四边形;②、③举反例等腰三角形,即可判断;④根据平行四边形与菱形的判定即可证得.
解答:解:①∵∠A+∠B=180°,∠A+∠D=180°,∴AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.正确.②、等腰梯形的对角线相等;所以错误.③、一组对边平行,另一组对边相等的四边形可能是等腰梯形;所以错误.④、对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形;所以正确.故选A.
点评:此题考查了平行四边形的判定、菱形的判定以及等腰三角形,矩形的性质.注意说明命题正确需要证明,说明命题错误举反例即可.