如图,?ABCD中,BC:AB=1:2,M为AB的中点,连接MD、MC,则∠DMC等于A.30°B.60°C.90°D.45°

发布时间:2020-07-29 16:56:58

如图,?ABCD中,BC:AB=1:2,M为AB的中点,连接MD、MC,则∠DMC等于A.30°B.60°C.90°D.45°

网友回答

C
解析分析:根据平行四边形对边相等以及点M是AB的中点,可得AB=AM,BC=BM,再根据等边对等角的性质可得∠ADM=∠AMD,∠BCM=∠BMC,然后结合两直线平行,内错角相等可得∠AMD=∠CDM,∠BMC=∠DCM,再推出∠CDM+∠DCM=90°,根据三角形的内角和定理解答.

解答:∵BC:AB=1:2,M为AB的中点,∴AD=AM,BC=BM,∴∠ADM=∠AMD,∠BCM=∠BMC,在?ABCD中,AB∥CD,∴∠AMD=∠CDM,∠BMC=∠DCM,∴∠ADM=∠CDM,∠BCM=∠DCM,∴∠CDM+∠DCM=90°,在△CDM中,∠DMC=180°-(∠CDM+∠DCM)=180°-90°=90°.故选C.

点评:被淘汰考查了平行四边形的性质以及平行线的性质,等边对等角的性质,是常见题型,需熟练掌握.
以上问题属网友观点,不代表本站立场,仅供参考!