如图,四边形OABC为菱形,点A、B在以点O为圆心的弧DE上,若AO=3,∠1=∠2,则扇形ODE的面积为A.πB.2πC.πD.3π
网友回答
D
解析分析:连接OB.根据等边三角形的性质可以求得∠AOC=120°,再结合∠1=∠2,即可求得扇形所在的圆心角的度数,从而根据扇形的面积公式进行求解.
解答:解:连接OB.∵OA=OB=OC=AB=BC,∴∠AOB+∠BOC=120°.又∠1=∠2,∴∠DOE=120°.∴扇形ODE的面积为=3π.故选D.
点评:此题综合运用了菱形的性质、等边三角形的性质和扇形的面积公式.