在△MNB中,BN=6,点A,C,D分别在MB,NB,MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则四边形ABCD的周长是A.24B.18C.16D.12
网友回答
D
解析分析:本题利用了平行四边形的性质,两组对边分别平行,利用两直线平行得出同位角相等后,再根据已知条件判断出BM=BN,从而四边形ABCD的周长=BM+BN=2BN而求解.
解答:在平行四边形ABCD中CD∥AB,AD∥BC,∴∠M=∠NDC,∠N=∠MDA,∵∠NDC=∠MDA,∴∠M=∠N=∠NDC=∠MDA,∴MB=BN=6,CD=CN,AD=MA,∴四边形ABCD的周长=AB+BC+CD+AD=MA+AB+BC+CN=MB+BN=2BN=12.故选D.
点评:要求周长就要先求出四边的长,要求四边的长,就要根据平行四边形的性质和已知条件计算.